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• NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL I,_MORANDUM NO. 782

STATUS OF WING FLUTTER*

By H, G. K_ssner

SU_I,f.ARY

This report presents a survey of previous theoretical

and experimental investigations on wing flutter covering

thirteen cases of flutter observed on airplanes. The di-
rect cause of flutter is, in the majority of cases, at-

tributable to (mass-) unbalanced ailerons.

Under the conservative assumption that the flutter
with the phase angle most favorable for excitation occurs

only in two degrees of freedom, the lowest critical speed
can be estimated from the data obtained on the oscillation

bench. Corrective measures for increasing the critical

speed and for definite avoidance of wing flutter, are dis-
cussed,

I. INTRODUCTION

The forced oscillations on airplane wings are oscil-
lations created solely by the air stream and have as a

rule nothing to do with the vibrations set up by the in-
ertia forces of the engine. They are therefore best des-

ignated by the term "flutter" since they revert to the

same underlying causes as the fluttering of a flag.

Flutter starts at the so-called "critical speed,"
which depends chiefly on the oscillation frequency and on

the wing chord. The lower the frequency and the smaller

the chord, the lower the critical speed will be. The os-

cillation frequency of a wing, in turn, depends on the
stiffness and on the mass of the wing.

Flutter in an air stream is possible only when a

plate - in whole or in part - is free to rotate about at

I,

*"Augenblicklicher Entwichlungsstand der Frage des Flugel-

flatterns." Luftfahrtforschung, October 3, 19Z5, pp.
193-209.
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least two axes or, which is the same, has at least two de-
grees of freedom of oscillation.

A wind vane of sheet metal made to rotate about one
axis only does not flutter. However, when the flagpole is
not rigid but free to swing laterally, thereby pivoting the
vane about an axis below it and parallel to the wind, flut-
ter is possible. If the vane is of cloth rather than metal,
it can turn about infinitely many axes and is therefore
particularly susceptible to flutter. So also is a v_ind
vane made of two pieces of sheet metal hinged together, be-
cause then the flagpole and the hinge line between the two
pieces form the two axes of rotation.

A similar condition exists when mounting a rudder R
with tab H to a practically rigid fin F (fig. 1). The
two axes of rotation are AI and A2. With • such an ar-
rangement flutter has actually been observed (reference I).

Far more importance, from the practical point of view,
attaches to the case of an airplane wing fitted with an
aileron. When oscillating, the wing turns about some nodal
axis which may, for instance, coincide with the wing center
line or the axis of the strut connections. Besides, the
aileron itself can turn about its hinge.

The first records of wing flutter go back to the ear-
ly days of flying, when the lateral control obtained by
twisting the wing tips, was abandoned in favor of the aile-
ron-control method

During the World War several cases Occurred where
flutter caused the ailerons to break and tear off. Like-
wise, almost all cases observed later on disclosed upon
investigation, that the ailerons were the cause of the ac-
cident. Even a rigid plate can flutter, as stated above,
when free to rotate about two axes. If the wing tip bends
and twists simultaneously, it can flutter even without ai-
lerons, although this case is much less frequent than the
one described first. •

In the following, the results of past investigations
on wing flutter are given without resorting to mathematical
deductions, while one section contains a discussion of the
theoretical relations.



N.A.C.A. Technical Hemorandum No. 782

II. DEVELOPMENTOF METHODSOF ANALYSIS

The exploration of tile causes of wing flutter is
marked by the diversity of methods employed with a view to
obtaining technically useful solutions of this extremely
complicated problem.

1. Theorem of Linear Differential Equations

for Steady Aerodynamic Forces

In the first flutter investigations, the air loads on
the oscillating wing were assumed to be steady and depend-
ent on the dynamic angle of attack, the dynamic angle of
attach being defined as the angle between the wing chord
and the momentary direction of motion of the oscillating
wing. Some authors also took into account the lift due to
dynamic profile camber. A wing oscillating about some ax-
is, while its wing chord describes a curved surface line
in flight, is identical with a wing in steady flight whose
profile curvature changes at measured intervals.

This substitution is, in fact, strictly correct.
Even these elementary assumptions afford a physical expla_
nation of the phenomenon of flutter through a system of
linear differential equations, the number of which depends
on the number of degrees of freedom. Flutter is possible
whenever undamped oscillations of constant amplitude, i.e.,
harmonic oscillations, are possible. Routh's discriminant
thereby served as a criterion from which the critical speed
may be computed.

The first calculations of this kind were made by
Blasius in June 1918, at the request of the Inspection
Section of the German Air Corps (reference 2), incident to
the investigation of the flutter on the lower wing of the
Albatros D3 biplane which, having only one spar, was of
low torsional stiffness. There were no ailerons on the

lower wing. The accide_al circumstance which prompted
the investigation of that particular case at all, was due
to the fact that at that time the significance of the ai-
leron as promoter of flutter, was not sufficiently appre-
ciated. Similar investigations were subsequently made by
v. Baumhauer and Koning, Bairstow, Frazer and Duncan,
Blenk and Liebers, Hesselbach, and wore extended to includo
oscillating ailerons (references 3 to 14).
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Indeed, the calculation of the simple elastlc-mass os-

cillations of an airplane w{ng on the oscillating bench,

stipulated a number of simplifying assumptions. Other sim-

plifying assumptions consiste_ in disregarding the energy-

consuming, unsteady system of _ortices and the premises of

material damping proportional to the rate of deformation.

The accuracy of such calculations therefore is, as a rule,

quite small. _umerical agreement between calculation and

experiment has been obtained only in cases where the as-

sumptions could be made to fit the particular case.

Agreement was more readily obtainable on cantilever

than on braced wings. At first it was believed that can-

tilever monoplanes were particularly susceptible to flutter,

but subsequent experience proved otherwise.

One important result was the following rule: The mass

axis of the wing shall lie ahead of the clas_Ic axis if

feasible; the aileron c.g. shall lle in its hinge axis in

order to avoid flutter.

2. Calculation of Vortex Separation

Whereas in the early stages of development, wing flut-

ter was treated as a mechanical problem, the aerodynamical

side now received more attention and it was attempted to

trace the source of the unsteady lift of the oscillating

wing and the correlated separation of vortices, at least
for the case of two-dimensional flow.

The problem of the oscillating wing was first attacked

by Birnbaum (references 15 and 16). He introduced the im-

portant concept of the reduced freq_me_cy (o, which is r[

times the ratio of wing chord to wave lengths. If n is

the oscillation frequency (in minutes), t, the wing chord

(in meters), and v, the flying speed (in kilometers per

hour), the reduced frequency is:

= o.o6 (1)
V

The air loads on the oscillating wing are functions of this

nondimensional parameter. Following the example of Prandtl,

Birnbaum replaced the wing by a system of bound vortices

and postulated that the sum of bound and free vortices must

remain constant with time; he obtained an equation which he

could solve for small values of the reduced frequency

_0 < 0.12. Beyond this point his development was not con-

vergent.
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This solution, however, was unsuitable for the eluci-

dation of the problem under consideration, because wing

f_utter always occurs at materially higher values of _.
Kussner found the general solution of Birnbaumls equation

and extended it to include the case of the co-oscillating
aileron (reference 17). Since the creation of harmonic

oscillations is always considered as the oscillation cri-

terion, it seemed natural to write the equations from the
very first for harmonic oscillations, whlch offers the

added advantage of utilizing the labor-savlng method of

complex presentation. The oscillation criterion then is

the disappearance of the complex denominator determinant,
which yields two equations for calculating the oscillation

frequency and the critical speed. This obviates the use

of the linear differential equation and Routh's discrimi-

nant. One particular advantage accruing from the use of

the harmonic oscillation is that the material damping can

be introduced in a simple and physlcally correct manner as

phase difference of the elastic force. This possibility

does not exist with the linear differential equation, where

it is even necessary to make a physically incorrect assump-

tion of the damping in order to obtain a linear equation.

On thisbasis it was then possible to calculate sever-

al examples of an oscillating flat plate in order to elu-

cidate systematically the influence of mass distribution,

elastic forces, and material damping. It was found that

with two degrees of freedom- bending and torsion- the

critical speed depends chiefly on:

1. The torsional oscillation frequency of the wing.

j

2. The backward position of the c.g. of the wing.

3. The material damping.

The result of material damping is that flutter is

possible only up to certain maximum _. In oscillations

at higher _, the energy obtainable from the air stream

would become inadequate for compensating the damping losses.

This rule holds not only for the two degrees of freedom un-

der discussion - bending and torsion- but is of general
validity, as will be shown later.

Theoretically the effect of material damping is so

much greater, as tile ratio of bending stiffness to tor-

sional stiffness is higher, which is approximately equiv-

alent to the ratio of wing chord to length _f overhang.
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As the total damping is not accurately determinable, no

fairly close agreement can be expected between calcula-

tion and observation except for cantilever wings of high

aspect ratio.

Similar investigations have been made in England.

Glauert calculated the unsteady air loads on an oscillat-

ing wing for the two degrees of freedom - bending and tor-

sion (reference 18). He proceeded from H. Wagnerls con-

cept of the area of discontinuity; but as his numerical

calculations extend only to _ = 0.5, they are insuffi-

cient for the mathematical treatment of flutter, with its

much higher _ values.

Duncan and Collar extended the calculation to a wing

oscillating with increasing amplitude (reference 19).

Lately, Theodorsen has calculated the air forces on an os-

cillating airfoil (reference 19a).

3. llodel Experiments

Kodel experiments are another means of investigating

wing flutter, but if such model tests are to afford prac-

tical conclusions the models must be constructed dynamic-

ally similar. Dynamic similarity is the more difficult to

attain as the model scale, i.e., the model, is smaller.

Since the model scale depends moreover on the jet diameter

of the available wind tunnel, the dynamic similarity was

disregarded at first and the simply constructQd model

wings were zou_ted in the air stream to a wall represent-

ing the plane of symmetry of the wing (references 9, 22,

and 25). Such models were sufficient for exploring the

effect of cog. position, damping, and mass unbalance of

the aileron. But the values of the reduced frequency ob-

tained in these tests are considerably less than the ex-

perimental values cited below.

The British havc investigated a great number of ac-

tual cases of flutter besides model testing since 1925,

and have shown great skill in their choice of assumptions

which afforded agreement between calculation and observa-

tion (references 7 to 13). Model experiments were fre-

quently used as basis for computing the still unknown

damping forces, the linear differential equations forming

the starting point, while Routh's discriminant was ex-

pressed as determinant, whereby some fields of the deter-

minant remained empty.
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i
The method of calculation glven in reference 1V was

checked at the D.V.L. by wind-tunnel experiments on model

cantilever wings, whichwere, of course, fairly heavy and

as a result, oscillated at a lower reduced frequency
co < 0.3 ireference 22). The observed critical speed on

five model wings was from 14 to 24 percent higher than the

theoretical, which may be attributed to the flow being

other than two-dimensional and to the energy absorption of
the disregarded trailing vortices.

Subsequently two dynamically similar models Of the

He 60 type were constructed at 1:5.6 scale with a span of
2.4 meters. These model tests were intended to trace the

cause of the accident described elsewhere and to test the

efficacy of Certain structural changes with a view to pre-
venting flutter. The problem was solved, although a num-
ber of unexpected difficulties were encountered in this

first attempt at constructing dynamically similar models.

The highest reduced frequency obtained in the tests was

0.76, a figure which is fairly close to the probable co =

0.93 at the time of the accident. Since complete dynamic

similarity is n6t attainable and the model usually has more

damping than the full-scale wing, the expected o0 value

for the r_odel Will _n any case be less than for the full-
size wing.

4. Statistical Investigation

Admittedly, the methods of investigation described so

far suffice to explain observed cases of flutter and to

prove the underlying causes of such flutter, wherein the

actually observed critical speed always constituted a

check on the correctness of the assumptions. But these

methods did not lend themselves to computing the critical

speed on a new type of airplane within a fair degree of

accuracy, particularly when applied to braced wings. Any

further analytical treatment of flutter was precluded,

since it was impossible to compute the purely elasti_ os'
cillations of a wing on the stand with a reasonable an%o_nt

of paper work, unless the construction was fairly simpI_
such as monospar, cantilever wings. As a result it was at-

tempted to establish a simple dimension rule, suitable for

practical use by the designer, to prevent wing flutter due

to torsion within the normal speed range.

Since the wing _ass and its backward c.g, position
are little ar_enable to influence, aside from the fact that
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the _aterial damping should also be considered as predeter-
mined, the only valid means for raising the critical speed
is the torsional stiffness. The German design specifica-
tions carried a provision for torsional stiffness as far
back as 1918 for army airplanes. The angle of twist in
the terminal dive was not to exceed 5o; this was reduced
to 3.5 ° in the 1926 design specifications. However, this
was primarily with a view to static torsional stability of
the wing rather than to wing flutter. With the increasing
use of airfoils with fixed c.p., this requirement became
uselcss,

The 1930 specifications contained a rule of thumb for
torsional stiffness, based on a few theoretical examples
and siuilarity considerations (reference 17).*

dy > k F (kgz=) (2)D(y) = Md [__ _o vk_ (y)_

In this formula, k was at first put at k = 0.12 to

0.24, but subsequent calculations brought about a change
to k = 0.5 (1934 design specifications). With this as-

sunption it is already very probable that the true critical

speed lies above that given in formula (2). It was there-

fore pern_issible to introduce the terminal diving speed
v in formula (2).

C

It is worthy of note that this formula, originally

merely intended for the degrees of freedom - wing torsion

and bending - proved practical also for a number of air-
foil-aileron combinations, because the observed maximum

values of the reduced frequency for this type of oscilla-

tion are of the same order of magnitude as the frequencies

stipulated for wing bending and torsion.

Roxbee Cox checked formula (2) against tsn actual

flutter cases (references 20 and 21). He applied torque

Md at the wing tip A-A, measured the angle of twist 9,

and computed therefrom the constant

k, = -- _d Yo (3)

Po v_ F(y)

Its nu_erical values are given in table I.

*For symbols, see section IV, 1.
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TABLE I. Torsional Stiffness and Flutter

Type

G10ster "Gamecock"

GIo st er"Gamecocl_' in
pull-out

Gloster "Gorcock", wood

Gloster "Gorcock", metal

Short "Satelllte"

Gloster "Grebe"

Desoutter l_ark II

Martinsyde F_4

6.68

6.68

6.58

6.58
f

7.87

6.54

6.97

6.08

t m

El

1.60

Vk

km/h

258

DeHavilland "Puss Hoth" 8.80 ,1.83 314

S immond "Spartan" ....__ ____ __5.021 IL37 .....___274

m 2 × I0.7639 = sq.ft.

0.135

I. 60 403 .074

I. 60 290 .106

I. 60 217 .257

I. 68 145 .033

1,60 258 .116

i. 55 225 .295

I. 68 323 .098

.129

.072

kL_/h x .62137 -- ml./hr.

k

0.405

.224

.318

.771

.066

.348

.590

.294

.258

.216

The characterization of the torsional stiffness solely

through angle of t_;ist at the tips is a rather summary pro-
cedure. Consequently, the k I values scatter considerably.

If the increase in angle of twist at the tip of a monoplane
wing is twice as great as the mean value over the whole

wing and three times as great for a biplane wing, then the

k values given in the last column of table I are compara-
ble to the mean value k = 0.35 (formula (3)). 0nly two

values lie above the maximum value of 0.5 stipulated in

the 1934 design specifications. It seems reasonable to
assume that these two cases at least involve flutter with

wing flexure and aileron motion. Unfortunately the Brit-
ish report fails to give the modes of oscillation and the

flutter frequencies. Index values for the bending stiff-
messes were established in a similar manner. However, it

serves no useful purpose to analyze these makeshift dimen-
sion rules, because section IV contains a method which af-

fords a better estimate of tile critical speed.
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The stiffness formulas are makeshift substitutes for
the calculation of the purely elastic oscillation frequen-
cies of a cellule A a calculation which is often quite
difficult. This difficulty may be overcome by subjecting
the finished air[lane to a static oscillation test. To
this end the airplane is elastically mounted, an unbalanced
rotor is attached below the fuselage end driven at varying
speeds by an electric motor, the mode of oscillation and
the frequency being recorded i_ resonance conditions.

Even when the data of such oscillation tests are
available, it is still extl-emely difficult and tedious to
analyze the critical flutter speed for the three degrees
of freedom- bending, torsion, and aileron motion- because
the calculation still contains important simplifying as-
sumptions, especially that of two-dimensional flow, as a
result of which the possibility of error should not be un-
derestimated. It is true, however, that this error is
usually on the safe side, as shown by the comparison be-
tween calculations and model tests mentioned above, be-
cause any damping, neglected in the calculation, will
raise the critical speed. In such a calculation, made
with the utmost care, for the braced He 9a moneylane a re-
duced frequency of _o= 1.18 was established, the possible
error being estimated at -20 percent. The chief drawback
of the operation lies in the physically correct terms for
the complex determinant rather than in the evaluation of
the determinant.

Presumably no substantially greater mathematical accu-
racy can be obtained even after the calculation has been
improved and refined, because flutter does not always start
at the sane speed even in the wind-tunnel test. The turbu-
lence of the air stream, the angle of attack of the wing,
and accidental small differences in the hinge friction -
all have some influence. Past experience has been that
flutter often starts in gusty weather, from which it may
bo concluded that gust shocks have overcome the initially
excessive friction forces.

Once flutter has started - in this or some other man-

ner - it frequently continues until the pilot has reduced

the speed to two thirds or less of its original value.

Possible csuses for this are: ru_;ture of the aileron con-

trol cables, the consistently smaller proportion of hinge

friction to the total damping as the a_plitude increases,

and lastly, the effect of change in angle of attack.
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Another fact should te mentioned in this connection.
At very low amplitudes the laws of potential flow do not
hold because then the viscosity of the air is no longer
negligible. Consequently, the air forces are smaller for
very small amplitudes than they should be according to
the potential theory, and therefore do not induce flutter.
This effect was observed by Birnbaum (re_erence 15, p.
292). It apparently is a boundary-layer effect. The wing
flops around, so to speak, in its boundary layer, without
encountering any resistance.

- In flight free from oscillations and at uniform speed

through still air, a wing could exceed its critical speed
by anyam0unt without starting to flutter. It would take

a shock of a certain minimum size, e.g., a gust shock, to

start flutt'er which, on the other hand would, of course, then

be extremely violent. }Totable in this connection is the

fact that flutter has often been observed during dr direct-

ly following a pull-out from a steep dive, particularly
in vicious cases. In a normal, mild :p_all;,o_t from high

speeds, only small changes of angle of attack are po.ssible.

It is improbable that the quotient d ca/dC_, on which the
. °

air forces depend, changes very materially wi'thin such a
small range of angle of attack. One" may suspect, there-

fore, that the disturbance of the boundary layer during

transition from gliding to ou!l-out or pull-out to level-

off was the trliggcr _ffect in these cases.

Summlng UP these facts deduced from exper_ence and

considering in particular thc great amount of time re-

quired for the calculation, which is not justified by the

small dogrcc of accuracy, one comes to the conclusion that

the analytical method, whilc adequate for explaining the

fundamental relations, is scarcely suitable for the predic-

tfon of the critical speed of a new type of airolane,

Once a physical process is no longer amenable to ana-

lytical trea%ment because it contains variables which can-

not be observed and numeri'cally defined, then it must be

explained statistically , based on a large number of obser-
vations. This statistical method, indicated during the

formulation of the stiffnes's formula (2), can now be ap_

plied in a more comprehensive manner to the problem of

wing flutter, because within the last few years a number
_f cases" 0_ _flutter have been investigated -in detail, even

thoughl this number isl as yet n0t very large from the point
of view of sta.tistical resear0h _

'" . . .. f , • . - . , _ ,. '_ - _ . , • •
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The most important parameter introduced in the'analyt"

ical treatment is the reduced frequency. An attempt was

therefore made to determine the reduced frequency in the
observed cases of flutter.

One may differentiate between "mild" and "vicious"

cases. In mild cases flutter occurs with small amplitudes

which are well below the ultimate strength of the wing.

The flutter usually stops at a speed slightly below that

at which it started, so that the flutter may be stopped

very quickly by pulling the stick back. These mild cases,

while few in number, can be gemonstrated with comparative-

ly little danger and are therefore suitable for flutter

investigations in free flight. A test of this kind made

on the He 46c, is described elsewhere in the report. The

recorded air speed, frequency, and mode of oscillation in

flight affords the true value of the reduced frequency and

the ratio of the amplitudes for each degree of freedom.

This determination is more difficult in the vicious

cases. In these cases flutter is, in a way, actually de-

layed by the very causes cited above and does not start

until the theoretical critical speed has been exceeded;

then, however, it begins with such violence as to cause

failure of the wings or ailerons. If the airplane is still

able to land, it is repaired after the flight and subject-

ed to an oscillation test. The dangerous mode of oscilla-

tion is that at which the lowest frequency is accompanied

by torsional oscillations of the wing or ailcron for the

reason that, aside from wing flexure, it requires one of

theso two degrees of freedom to give increasing amplitudes.

HOwever, this does not imply that flutter must occur at

the frequency observed in the oscillation test, because the

air forces existing during flutter may modify the mode of

oscillation and the frequency. In particular, a differ-
ence in phase angle is always to be expec{ed between bend-

ing and torsion, because it is only under these conditions

that the energy for increasing the amplitudes can be taken
out of the air stream, Even so, the oscillation test af-

fords a certain basis, which is the more reliable as the

resonance condition appearing in the oscillation test is

more definitely expressed; i.e., as the damping is smal_
er. (See section IV, 4.)

If the airplane is destroyed by the accident, another

airplane of the same type will be subjected to the oscilla-

tion test. The flight speed at the time of the accident

can rarely be given very accurately for obvlous reasons,
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In serious accidents one may have to rely on statements of
eyewitnesses on the ground.

The possibility of errors introduced when determining
the reduced frequency is therefore great for the vicious
cases. It is also necessary to decide whether the calcula-
tion of the reduced frequency is to be effected at the
speed at which flutter started or at which it stopped.
But since the start of flutter is decisive for flight op-
eration, the speed at incipient flutter is customarily pre-
ferred. In this manner the observed values discussed in
the next section have been obtained. Disregarding the
possible errors, they range between _o = 0.58 and a) = 1.14,

from which it appears that the reduced frequency in new

types of airplanes will not exceed o}h = 1.14.

Testing an airplane on the oscillation bench and ob-

serving the dangerous mode of oscillation with the fre-

quency n, the lowest possible value of the critical speed
can be roughly estimated on the basis of the assumed maxi_

mum value _h of the reduced frequency. If tm is the

mean chord of the outer part of the oscillating wing, the

lowest possible value of thecrltical speed is

n tm

vk = o.o6 w -_h-- ]_m/h (4)

Obviously such a statistical appraisal is worthless unless

the particular type of airplane is not substantially dif-
ferent from all the airplanes which showed flutter in the

indicated range of reduced frequencies by having incorpo-
rated special features which minimize flutter hazard.

When these investigations on flutter were started, the

probability of finding such a type of airplane was very
small, but in time there will be an ever-increasing number

of types on which such preventative measures may be effect-

ed with at least the partial success of lower reduced fre-
quency. This being so, the rough statistical estimate may

be replaced by an improved method (section IV) which per-

mits the inclusion of proved preventative measures.

For mass-balanced ailerons or wings without ailerons,

the lowest possible critical speed is higher, and the re-

duced frequency Consequently lower, than the maximum value
given above. Prac%ical data a_e very scarce on this sub-
ject, because inall cases of flutter described hereinaf-

ter, the ailerons contributed to tl_e growth of oscillations;
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at least, it was impossible to state whether in one case

or the other, flutter would also have occurred if the aile-

rons had been rigidly connected to the wings. The one case

of flutter without aileron which had been definitely estab-

lished, prompted the first investigation of flutter without

aileron (section II, 1).

Naturally, as the speed of airplanes increase, the re-

gion of flutter without aileron will also bc reached more

frequently, and any appraisal of the critical speed based
on the static oscillation must allow for this possible mode

of oscillation also.

III. RESULTS

I. Analysis of Observed Cases

a l Braced DP 9 (references 4 and 24).- The strut is

short, so that a long overhang exists. This model devel-

oped two cases of vicious flutter in the spring and autumn

of 1925, starting during pull-up from a steep glide at

about 180 km/hb In one case it led to complete fracture

of the wing; in the other, to fracture of the ribs in the

overhang and of the aileron control cables. In gusty .

weather it started a slight flutter at 1S5 km/h.

After the wing was mounted on a rigid test frame, it

showed a flexural _ oscillation frequency of 548/min., and a

torsional oscillation frequency of 494/rain. The frequency

of the free oscillation may be rated at 520/rain, The wing

chord was 1.5 m; the aileron chord 0.32 m; a_d the aileron

c.g. was 126 mm behins the hinge line. The reduced fre-

quency i s

O_ = 0.1885 520 X 1.5 = 0.82
180

b__ Braced He 8a nono_l,%ne.- This airplane crashed in

the fall of 1928, due to fracture of the wings during an

exhibition flight. From the reports of eyewitnesses, it

seems quite safe to conclude that flutter w,%s the cause.

The flight speed is estimated at 350 km/h. An airplane of

the sane type was tested on the oscillation stand. The

dangerous mode of oscillation lies probably at 540/rain.,

and has a nodal line running from the rear strut fitting

toward the point where the curved tip joins the straight

leading edge (fig. S).

m × 39.37 = in. n_l X .03937 = in. ku/h × .62137 = mi./hr.
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The wing chord was 3.0 m, the aileron chord 0.3 m,
the aileron c.g: was 50 mm behind the hinge line. The re-

duced frequency _is

O0 = 0.1885 540 X 3.0 = 0.87
350

c) Braced L 78 bipla-nc.- This model, of which quite a
number had been built, had often been dived at 350 kin/h,

when in Play 1930, it developed a _ase of mild flutter while

flying at a speed of about 210 km/h. It started with an

oscillation of the strut between the lower and upper aile-

rons at great az_plitude, then the wings fluttered so se-

verely that the pilot was unable to hold the stick. As
soon as the pilot cut his*" speed, the oscillations died

out. The dangerous mode lies at 860/min. The lower wing

oscillates in bending, the nodal line being near the strut

fittings.

The aileron connecting strut shows severe lateral de-

flections which cause the upper-wing ailerons to oscillate
in torsion (fig. 4).

The zlean chord of the Overhang of the lower wing is
1.36 m; the aileron chord from hinge line to trailing edge

is ll5 mm; the aileron e.g. is 23 mn behind the hinge line.

The reduced frequency is

= 0.1885 860 x 1.36 = 1.05
210

d) Unbraced He 60 biplane.- This model is a rather

less conventional design. The lower wing is braced against
the floats while the two struts on each side reach only to

the front spar. No wire bracing is used between the wings.

While in other versions of this type the spars had been

made of wood, this particular type (He 60) utilized steel,

providing the same strength for the same spar height. The
ratio of Youngts modulus to ultimate strength for steel

being substantially lower than for wood, it assured low

natural frequencies of the wing, In addition, the aileron

system had an unbalance of 75 cm kg. Apprehensions were
therefore voiced from the very beginning that flutter might

occur at speeds lower than the prescribed diving speed of
365 km/h.

In the attempt to reach the prescribed diving speed,
the airplane crashed in December 1931, as a result of a
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torn upper wing. According to the testlmonyof eyewit-
nesses, it was a case of dangerous flutter. The speed was
estimated at 350 ku/h.

The dangerous _ode lies at 780/win. The nodal line
of the upper wing was in the overhang close to and a!most
parallel with the leading edge in the inner bay; at approx-
imate wing center it runs parallel to the wing axis (fig.
5). The wing chord is 2.2 m; the aileron chord 0.4 m.
The reduced frequency is

= 0.1885
780 X 2.2

35O
= 0.93

o) B_ra_ce_d_He 46c_b_iDlane,- The He 4Gc is a braced bi-

plane with a s_all lower wing developed from a hlgh-wing

r_onoplane. After a long period of service, it finally re-
vealed a wild case of flutter at 260 km/h which, however,

disappeared immediately as soon as the speed was reduced.
It was therefore decided to obtain sor:,e oscillation photo-

graphs in flight with this airplane, taking, of course,

proper precautions. The records showed the flexural oscil-

lation of the lower wing, coupled with turning of the un-
balance_ aileron systen_ as the cause of the increase; the

aileron e.g. was 52 n_ behind the hinge line. The aileron

chord of the lower wing is 335 mm, and that of the upper

wing, 500 _,z'_.;the wing chord is 1.4 u on the lower, and

2.0 n on the upper wing.

The oscillation test disclosed between 520 and 755/

win., a series of antisymmetrical oscillation modes of the
_]

whole cellule about the longitu(linal, vertical,/'transverse,

axes, accompanied in part by severe aileron motions (aile-

ron control by r:_eans of torque tubes). The re,_]arkable fea-
ture is that these modes do not induce flutter, This maybe

attributable to a slight mass-coupling with the aileron os-
cillation as a result of the small amT_litude of the aile-

ron hinge llne and the shifting of the location of the

nodal line closer to the trailing edge. Possibly the damp-

ing of the antisymmetrical oscillations of the whole cel-

lule is greater. The first symmetrical natural bending

frequencies of the wings lie between 815 and 895/rain. The

nodal llne of the lower wing lies at 50 percent or more of

wing chord forward of the leading edge (fig. 6). The reso-

nance conditions are not pronounced.

But the flutter frequencies recorded with the opti-

graph, lie in this range. Flutter started with a frequeney
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of 830-860/min., and dropped to 810/min. as speed and am-
plitude incren, sed. The increase of flutter amplitude was
probably favored by the method of mounting of the aileron
connecting strut, which sloped about 25° toward the plane
of the struts. Thus bending of :the ul_per wing caused mo-
tion of the lower aileron.

The flight records ranged between altitudes of from
4,000 to 600 m, so as to establish the effect of air densi-
ty. Flutter started at 260 to 275 km/h. The reduced fre-
quency of the lower wing was found at

0.2

• = o.87 - (5)
0

The air-density effect p is therefore relatively small.

f) Cantilever :bi_la_ne_EL_!A__![Schwalbe".- This type,
built since 1927, had been in service quite awhile when, in

the spring of 1932, several of them developed flutter be-

Lowthe level top speed Which could not be called mild
because it resulted in fracture of the ailerons. An air-

plane of this type was therefore subjected to an oscilla-
tion test.

The dahgerous mode lies at 6?5/min. It is the symmet-

rical fundamental bending mode of both wings (fig. 7). The
nodal line lies far forward of the leading edge of the wing.

The ailerons are in phase opposition; their chord is 240 mm,

their e.g. is 103 mm behind the hinge line. This results

fn a strong mass coupling between wing bending and aileron
motion. The mean chord of the extremely oscillating wing

tips is 1.3 m. The experiment's were temporarily inter-

rupte_ to permit the airplane to take part in an air cir-
cus. During this air Circus in July 1932, it was stunted

at speeds up to 200 km/h without developing flutter;, but as

soon as the pilot started to land, it suddenly began to
flutter very severely at 145 1:m/h, which ended in the

breaking of the ailerons and damage to the plywood covering,

The flutter continued up to 100 Km/h speed. This case

shows very clearly the unpredictability of flutter.

The reduced frequency at start of flutter is

675 X 1.3 _,_ = 0.1885 .............. = 1.14
145
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while at the end it reaches the high value of 00e = 1.65.

&_ C__t!l_eyer_Do_lO mo_9__lane.- This is an all-metal

high-wing design. The three-spar wing is braced by short

struts. The cantilever length is 72 percent of the serai-

span. The leading edge of the wing is approximately a

semiellipse, the trailing edge is straight. During a

flight on September 9, 1932, it developed such a severe

case of vicious flutter at about 450 km/h, that both wing

tips broke off to the length of one chord, While level-

ing off from a dive at 2,500 m to 1,500 m, the pilot noted

oscillations on the ailerons as far as the wing tips which,

within about 3 seconds, resulted in broken wing tips and

ailerons. The pilot was able to land safely and the air-

plane was subsequently repaired and tested on the oscil-

lating stand.

The wing reveals a series of oscillation modes in the
500 to 1,250/rain. frequency zone. whereby the nodal line

gradually shifts from the front toward the rear spar. Al-

though the aileron, with a chord of Z55 ram, has its c.g. 41

mm behind the hinge line, these modes do not induce flut-

ter because the aileron control is very rigid (push rods),

so that the aileron motion does not build up to large am-

plitudes at these frequencies, The dangerous mode lies at

1,400 to 1,500/rain. At 1,400/min. the nodal line is exact-

ly coincident with the principal line of failure of the

wing tips, which slopes 30 ° outward and backward from the

leading edge in the direction of flight. At 1,500/rain.

the outer nodal line, in form of a quarter circle about

the wing tip, is in part coincident with the line of the

secondary failure. The inner nodal llne runs from the

point of intersection of the trailing edge and plane of

struts at an angle of ZO ° outward, and passes directly

through a region in _vhich the internal bracing was broken

( fig. 8).

Without the lines of failure as clues, it would in-

deed be difficult in this case to ascertain the dangerous

mode from the static oscillation test alone. The next

section contains various factors which should help to fa-

cilitate this declsion.

Another source of error lies in the estimate Of the

mean chord of that part of the wing which oscillates most

severely, because of its pronounced taper in plan. Ap-

praising the mean chord of the sever_ wing tip at 1,6 m

and the flutter frequency at 1,450/nin., the reduced fre-

quency i s
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- , °

co = 0.1885 1450 X 1,6 = 0.97
450

h___B__ra_cedLL__...lO2_._._ono_o!ane.,- This airplane is the braced
high-wing type. The wing structure is of duralumin; has
two spars, and is covered with fabric. The ailerons are

split. The aileron chord from hinge llne to trailing edge

is ZOO ram; the aileron e.g. is 35 zm behind the hlnge line.

With this e.g. position, vicious flutter started at 290

kin/h, and persisted to 120 km/h. The rivets of the torsion
structure were sheared off from the outboard aileron hinges

of both wings. This explains perhaps the rather extended

range of speeds during which flutter persists. With per-
fect nhss balance' a speed of 340 km/h had previously been

obtained without flutter.

The airplane was then tested on the oscillating bench.

Asymzetrical and sy_.metrical furdamental bending modes oc-

curred at 500/rain. and 580/rain. The natural frequency of

the ailerons lies at 730/min, The dangerous mode is the
torsional oscillation of the wing at 835/zln. The nodal

line muns over the entire span between front and rear spar.

The aileron amplitudes are high (fig. 9).

For a 1.56 m wing chord, the reduced frequency at in-

cipient flutter amounts to

= 0.1885 1.56 _ o.85
290

as against the abnormally high coe = 2.05 at its termina-

tion; the failure of the torsion structure itself m_y per-

haps have lowered the flutter freq .... .,.

[__AC. 1.2 E_ca.nt_i!e_v_ei mO_&o_lane.- This is a cantilever

high-wlng design of wood with tapered wings. While compet-

ing in the 1932 International Challenee Contest, it devel-
oped a mild case of flutter at 220 km/h, but only in rough,

gusty weather. In fair weather it reached a speed of 270

km/h without flutter.

The mean chord of the oscillating wing tip is 1.4 m;

the aileron chord is 300 r,_m; the aileron c.g. is 112 mm

behind the hinge line.

Tested on the oscillation bench, this airplane revealed
:

bending oscillations :vith very indefinite resonance condi.

tions at 585 to 850/min. frequencies. The dangerous mode
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apparently lies between 800 and 830/rain., because then the

aileron motion caused by zmss coupling and elasticity 8f
the control cables, has a phase difference of about 90
against the bending oscillation; that is, is in resonance

with the bending oscillation (fig. 10). T.he reduced fre-

quency is

= 0.1885 815 X 1.4 = 0.98.
: 220

_ Do 12 cantilever monoplane "!!belle_.- This is a

high-wlng all-metal amphibian. The two-spar wing is ta-

pered in plan form.

The airplane showed vicious flutter on September 27,

1933, at 180 km/h. The oscillations started when the pi-

lot opened the throttle after leveling off from a glide.
The oscillations were so severe that one aileron jumped

out of its hinges and both wings were badly damaged. The

wing flutter was preceded by tail buffeting, initiated ap-

parently when opening the throttle, and which in turn ._

started the wing flutter. The pilot made a safe landing,

however, after which the airplane was repaired and tested
on the oscillation bench.

The dangerous oscillation mode of the wing lies at

580/min., which at the same time is the principal resonance

mode of the horizontal tail surfaces. It is an antlsym-

metrical bending oscillation; the nodal line starts at the

inner aileron and runs outwardly at an angle of 15 ° in the

directlon of flighZ (fig. ll). The aileron oscillates in

torsion. The mean chord of the outer oscillating part of
the wing was estimated at 1.3 m; the aileron chord is 400

mm. The aileron is not mass-balanced; its e.g. position
was estimated at 100 mm behind the hinge line. The aile-

ron control cables are not very rigid. The reduced fre-

quency is

= 0.1885 9_89 = 0.79.
180

k) i4__2_8mo_no/pla_ne.- This is a cantilever low-wlng de-

sign, of duralumin with wings tapering in plan only.

After extensive testing, the airplane developed a mild

case of flutter at 220 kin/h, which was started by the

(mass-) unbalanced ailerons. It stopped when the speed

was reduced to 180 1_m/h. The pilot had the impression
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that the flutter started each time after a bump, even when

very slight. The engine r.p.m, ws:s 1,750 at the beginning.

Later the airplane was dived to 250 km/h at 1,950 r.p.m.

without developing flutter.

The airplane was then subjected to an oscillati_z

test. The wings have a symmetrical _ fundamental flexural

oscillation at 480/rain. and antisymmetrical bending oscil-

lations at 850 and 770/min. The resonance points are very

clearly expressed. The dangerous mode _eems to lie at

770/rain., because this is the frequency at which out-of-

phase oscillation of the ailerons is first noticed, which

likens it v uch to the dangerous mode of the Do 12. The

nodal line runs outward from a point near the inboard end

of the aileron at an angle of l0 ° _n the direction of flight
( fig. 12).

The mean ch0r_ of the outer oscillating part of the

wing is taken at 1.05 m, the aileron chord at 350 ram; the

c.g. is 1A0 mm behind the hinge line. The reduced fre-

quency i s

CO = 0.1885 770 X 1.05

22O
: 0.69.

It is planned to make flutter measurements in flight on

this airplane in order to determine the flutter frequen-
cies exactly.

[[_B_i_l_a_g__A_5_ighik_E.- This is a biplane of wood

construction, braced in one plane. In the spring of 1932,

the airplane went into a long, unexpected dive with a burn-

ing engine and started to flutter, finally breaking the

cellule. The calculated terminal velocity is 280 km/h.

Another airplane of the same type was subjected to an

oscillation test. At 490 and 615/rain. the whole cellule

started to oscillate; at 825 and 1000/min., the overhang

went into flexural oscillations. The dangerous mode lles

at 1215, because this was the frequency at which the aile-

rons first revealed phase opposition. The nodal llne runs

from the intersection of the strut plane and trailing edge

to the first third of the edge strip (fig. 13).

The mean wing chord is 1.18 m, the aileron chord 240

ram, the e.g. of the aileron system is 21 mm behind the

hinge line. The reduced frequency is

_0 : 0.1885 1215 X 1.18 = 0.97.
28O
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_L__I_!a__A__G6 C.- This is a braced biplane with a
smal!er lower wing. In a dive at 340 km/h,_the airplane

_tarted/to flutter, Which led to the beglnnlng_of a frac-

ture'o_ the lower front spar as well as of the plywood

covering on the lower side of the wing. Since the stick
did not oscillate, the mode was symmetrical. The chord of

the lower wing is 1.65 m; the e.g. of the aileron lies 4_

mm bohind the hinge line.

The airplane was subjected to an oscillation test by

t h e manufacturer. The bending oscillation of the lower
wing at 790/min. was considered as the dangerous mode. At

this mode, the inboard part of the wing pivots roughly
about the front spar, while tile overhang bends.

The reduced frequency is

= 0.1885 790 X 1.65 = 0.72
340

After finishing this report, flutter was again observed

after the ailerons had been completely mass-balanced and

were perfectly quiet in the oscillation test. Following

some minor changes in the shape of the aileron, it devel-

oped vicious flutter at 420 km/h, leading to complete de-

struction of the cellule. This gives

(0 = 0.1885 790 X 1.65 = 0.58
420

This might have been a case of flutter in combined bending

and torsion, although not without some probable aerodynamic
coupling effect of the aileron motion.

,L



N•A.C.A. Technical Memorandum No. 782 23

No.

1

2

3

4

5

6

7

8

9

I0

II

12

13

TABLE II. Observed Cases

Type

DP 9

He 8

L 78

He 60

He 46 c

KL 1 A

Do I0

L 102

AC 12 E

Do 12

N 28

S 24

Ar 66 C

t m

m

1,5

3.0

1.36

2.2

1.4

1.3

1.6

1.56

1,4

1.3

1.05

1.18

1.65

in

0.32

• 42

.20

• 41

.27

.24

.30

• 30

.30

.40

.35

.24 .021

' M .051

i- ..............

m min

0.126 520

• 055 540

.023 860

•150 780

.052 845

•103] 675
.041 1450

.0351 835

• 112 815

.I00

•140

nq --A-n .... vk

1 1 km
rain m1_ -]5-

- - 180

290 - 350

- 30 210

910 40 350

550 40 2 68

675 45 145

- 60 450

730 35 290

700 120 220

580 460 50 180

770 ' 1410 60 220
I

1215 I - 70 280

790 I - - $40
...... L .................

0.82

.87

1.05

.93

,87

1,14

.97

.85

.98

.79

.69

.97

.72





No,

1

2

3

4

5

l0

II

12
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TABLE IIa. Observed Cases

Type

DF 9

He 8

L 78

He 60

He 46 c

KL I A

Do I0

L 102

AC 12 E

Do 12

M 28

S 24

Ar 66 C

Mode of

• o scil-

lation

symmet-
rlcal

antisym-
metrical

symmet-
rical

antisym-
metrical

symmet-
rical

antisym-
metrical

m

symmet-
rical

Rigidity
of

controls

small

I[

great

Aspect

vicious

Wing
struc-
ture

wood

small

vicious

mild

vicious

metal

wood

great

small Ii

mild

great

small

vicious

mild

vicious

II

metal

wood

metal

wood

2. Conclusions

The numerical data of these 13 test cases are append-

ed in tables II and fla. The mean value for incipient

flutter is, according to table If:

_0m = 0.90 =hO.12.
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The majority of cases are vicious; only 30 percent

are mild (table IIa). The structural material does ndt

seem to have any effect.

When the stiffness of the ailerons and their controls

is great, flutter occurs in an antisymmetrical mode be-

cause only then can the ailerons oscillate freely and

transmit energy.

If the stiffness of the aileroncontrol is small,

flutter may also occur in a symmetrical mode, but then on-

ly at a frequency high enough above the natural aileron

frdquency to permit motion in phase opposition. 0scilla-

tions of the whole cellule of a biplane about the vertical

an_9 the transverse axis may not necessarily lead to flutter,
even when combined with additive wing torsion. The danger-

ous mode, however, is frequently the first natural mode

of the wing independent of the cellule.

The reason for this behavior lies in the damping of

the oscillations through the precessional moment of the
rotating propeller. Heretofore, all airplane oscillation

tests have been, almost without exception; static tests,

i.e., with the engine standing still. Under these condi-
tions, a number of cellule oscillation modes may develop,

during which the fuselage oscillates slightly in torsion.

In flight with full r.p.m., the precessional moment of the

propeller damps such oscillations very effectively, so
that flutter is very rare. The KL 1 A revealed such cel-

lule oscillations oI_ the stand at the dangerous frequency.

The sudden entry of flutter when starting to land, was

probably attributable to the diminished damping of the pro-

peller as a result of the smaller r.p.m. One two-engine

airplane tested on tile oscillation bench manifested a
marked difference in oscillation modes, depending on wheth-

er the engines were running or not. On the other hand,

purely sym_,_etrical wing oscillations, during which the

thrust axis is merely translatory, do not prevent flutter

as proved by the Ar 66 C airplane.

Table II also gives the natural frequencies of the ai-

leron Oscillations n_ for various airplanes, together with
the width of the reso._ance curve An defining the damping

of the flutter oscillation. This width is measured at 71

percent of the maximum amplitude.
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IV. DETERMINATI_01_ OF LIMITI!TG CONDITI01_S FOR FLUTTER

Section !I show s that further analytical treatment of
concrete cases of flutter is impracticalbecause of the

many secondary circumstances which are not amenable to nu-

merical treatment. Even so, it is useful from the point

of view of flutter prevention, to establish analytically

the limiting conditions under which flutter is possible.

Flutter is obviously possible only when the oscillat-

ing wing is able to take energy out of •_he air stream in

order to equalize the ever-present damping losses. For a

general survey, the calculation may be restricted to the
limlti:_g conditions Of •energy absorption in two-dlmensional

flow.

The reduction of llft due to tip vortices of the os-

cillating wing tip, •will hawe the effect of increasing

the damping and narrowing the range in which flutter is
posslble. This additi0nal damping effect can be estimated,

although it is neglected in the following derlvation.

m

m

L .

m

b

bq

dF

" i. Notation •

strokQ (bending) emplitude of (aerodynamic

neutral •axis (quarter-ch0rd_point),

torsional amplitude of wing.

deflection amplitude of aileron.

effective span of oscillating wing tip.

aileron span.

_amp_ing factor of wing,

dR

D(y) kg _me

eF m

damping factor of aileron.

torsional stiffness of wing at abscissa y,

distance fr0m ngd#l line of wing to center

line of wing., ; _ . ....

E m kg energy of oscillating airplane.

EF m kg energy of wing.
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F

g

h

k

k R m
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m kg

m 2

I)
2) m

m

L m m kg/s

Ldm m kg/s

M d m kg

m kg s_/m

m F kg s_/m

m R kg s_/m

n i/min.

n o l/rain.

An I/rain.

27

P

S

m

s R

t m

t R m

energy of aileron.

wing area.

damping phase angle of wing oscillation.

damping phase angle of aileron oscillation.

stiffness constant. _

radius of gyration of wing section, referred

to nodal line.

radius of gyration of aileron, referred to

aileron nodal line.

semichord of wing.

energy coefficients.

mean aerodynamic energy.

mean damping power.

torsional moment.

l_aSS .

mass of oscillating wing tip.

aileron mass,

oscillation frequency.

oscillation frequency at resonance.

width of resonance curve in oscillation

test.

absolute oscillation amplitude.

position of wing c.g. behind neutral point

(quarter-chord Doint_.

position of aileron e.g. behind hinge line.

wing chord.

aileron chord.
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v mls; km/h

y m

t_ =

V

P

_o

_ tR
"r _ _--

qo

GF kg/m s
F tm

1/s

kg s_/m 4

k

00h

flight speed.

coordinate along span.

index of _mplitude ratio for wing.

index of amplitude ratio for aileron.

specific weight of wing.

frequency of wing oscillation in radlans.

air density.

air density at sea level.

aileron chord ratio.

l) angle of twist.

2) phase angle between bending and torsional
oscillat ion.

phase angle between bending and torsional
oscillation of aileron.

phase angle between torsional oscillation of

wing and torsional oscillation of aileron.

functions of aileron chord ratio.

reduced frequency.

maximum value of reduced frequency.

2. Aerodynamic Energy of Oscillation

With A % denoting the stroke (bending) amplitude,

B and C, the amplitudes of angular motion of wing and aile-
ron; and index I signifying the real part, index " the im-

aginary part of these amplitudes; a bar - their absolute

magnitude , the.time average of the aerodynamic energy of
oscillation is, according to (16) and (17):

r--"--"

*The theoretical development of the ensuing formulas is to

be published in a separate report.
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L= = 21-'rT p v v = %3 b [.T.'_ 't,_ + __ %= + _ "/,3

+ (AIB v + i"_") %_. + (lV:B" - A"B t) /,s

+ (A'C' + A"C") _ + (A'C"- A"C')_7

+ (B'C' + B"C") 18 + (B'C" - B"C _) 19 (6)

where the energy coefficients:

11 = 1 + T t

Is = 1

%3 = I T"
2

%4 = T"--+ 2 + T I
00

%s -- i + T t T'!

IG = ! [_ D_ + 8 (1 + T') + _3]TT ----2------

I + T v @_ + $s ,,]
TT CO 2,

%s _ [@s + @9-+ @s + 1 + T' ]

@s< I+T')1 [@s+%,_= _ _- _" ]

(7)

The functions T'(03), T"(_) based on HankelVs cylin-
der functions, are given in table Ill. The functions

Sn(T) derived from trigonometrical functions, are given

in table IV. From these the energy coefficients In have

been computed for aileron chord ratios of x = 0.15, 0.20,

0.25 with a 20-inch slide rule (table V). The energy is

negative when taken out of the air stream.
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T' I

T" 0

tO

T I

T"

TABLE III. Functions T'(_o) , T"(_o)

0.2

1.2

0,4

0.250

- .330

1.4

0.6

0.158

- ,276

1,6

0.088

-. 140

0.8

0.108

-.233

1.8

!.0

2,0 O_

TABLE IV. Function _n(T)

T 0 .I0 0.15 0 .20 0.25 0 •30

}s

_s

Go

I .244

.334

.164

.0264

1.080

•615

.0506

.0079

.0459

.0546

.0056

1.510

.610

.296

.0719

1,214

I .077

.1347

.0192

.1246

•1803

.0281

1.727

.935

.447

.1459

I .280

1.577

.2672

.0400

,2519

.4180

.0876

1.913

1.299

.614

.2518

I .299

2,094

.4507

.0707

.4330

,7978

.2128

2,076

1.698

.793

.3924

1,283

2.612

.6860

,i129

•6718

1,345

.4371
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O0

LO
r-4

0

0

0

%1

%s

TABLE V. Energy Coefficients

0,4 0.6

1,250 1,158

I I

1,425 1,698

3,455 2.205

i.108

I

1.817

1.618

1,079

I

1.878

1.279

1,060

1

1,914

1,059

1.038

I

1.951

.788

2.0

1,026

1

1.968

.628

%-&:OJi9o .0oTJ[o-.oof0 
_G

7,7

_'8

7,9

7, 3

7,7

t_

7.,9

-.1773

1.534

•1926

•3757

0.0195

-•1175

1.769

'2940

.3854

- .0106

.954

.1934

.3796

o.o2o7

.0695

1.104

.2956

.3934

•0652

.688

.1938

•3815

0.0212

.15%2

.798

.2964

.3970

o.6o916

.1059

.538

.1939

.3825

0.0215 0.0217

.1993

.624

.2967

.3993

0.00923

•1300

.442

.1941

.3832

0.00931

.i561

•326

•1942

.3840

0.00935

.1696

.258

.1943

.3848

7,3 0.0377

7, 6 - .0343

7"7 1.975

i%s .407

_9 .3746

0 .O4O0

.1682

1.235

.410

.3886

0.0410 0.0416

.2596 I .3078

.895 .701

I

•412 1 •412

I
.3952 .3991

............... .............

0.0419

.3374

.576

.413

.4016

0.0422

.3686

.426

.413

.40 45

0.0424

.3841

.335

.414

.406 "

.2265

.513

.2970

.4O06

0.0219

.2553

.379

.2973

.4024

0,0219

.2697

.300

,2976

.4034
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3. Damp Izg

As the damping energy Was not measured directly in
the oscillation tests, the energy absorbed by material"

damping and external friction T_ust be estimated from the

phase differenSe between elastlc'force'and deformation,

The previous assumption of a constant phase differ-

ence glves an elliptic hysteresis loop independent of fre-

quency, which _grees closely w_th observed fac_s, T_e"

product of this phase difference and _T equals the usual
logarithmic decrement.' A detafled expdsition of these "re-
lations will be found in B. v. SchlippeVs article (refer-

ence 25). " ..........

Tlle damp_ng energ_ is ob'tdlned fro'm the relation

endrgy of dam_ing for a complete cycle
2_ g: = mean energy-of oscillating system

The phase angles g and I_ of the wing and of the aileron
oscillations may be degermined "from the width of the reso-

nance curves of the oscillation test. If the width of the

resonahce curve An _ is measured at 71 percent of the reso-

nance amplitude (fig. 14), the phase angle is

g = An_ (.8)
n o

At higher ampl_tudes tl_e phase angle increases, the InJ

crease being, as a rule, greater for wooden wings than

for met'al wing_.

An exception to this is the damping due to friction
in the aileron hingebearings. With constant frictional

moment the damping is pr0portional to the (angular) ampli-
tude C, while the energy of the oscillating aileron rises

proporgionally "to C 2.

_B# the same argument, the "phase angle h of the ai-

leron is inversely proportional to .the amplitude. _ Thus,

at vdr# low amplitudes, the phase angle of the "damping can

be so great as to make flutter impossible. Flutter cannot

set in unless some outside cause imparts a momentum of a
certs.in minimum rise to the aileron. At high amplitudes

only the residual damping due to material damping of the
control cables remains. With careful installation of the

ailerons and cables this effect is less pronounced.
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Exactly corresponding averages must be formed for the am-
plitudes B and C. The mean damping energy is

Ldm = _(g EF÷h ER) = ½ _ p _ v _3 b _(dF _+d R C=) (12)

For the sake of brevity, the following nondinensional damp-

ing factors have been introduced into equation (12):

[ ¸p _..._ + L+o
- : • _ (13)

p -t.-r% + _: .rr_

Table Vl gives damping factors for several airplanes.

The factor dF1 applies to pure bending oscillation. The

torsional o_cillation about the neutral_point is estimated

at 0.4 dF1 because the mass distribution along the chord

is not very unlike in the various types. Th'e aerodynamic-

ally effective wing span b m_y be estimated from the

dangerous oscillation mode. Only a portion of the outer
oscillating part of the wing between wing tip and nodal

line or plane of struts can be considered as aerodynamically

effective, because the trailing Vortices lower the efficien-

cy of the wing tips as compared with two-dimensional flow.

It should be emphasized that this estimate of the
damping is quite rough and therefore merely affords the ap-

proximate magnitude of the damping energy. For this rea-

son, the direct determination of the energy of damping

from oscillation tests is very much desired.

4. Ratio Qf Amplitudes

In order to be able to compare the amplitude ratios
of the forced oscillations with those of the oscillation

test, the elastic oscillatlen Of a flat plate covered with

a mass was imvestigated. The plate is assumed to be piv-
oted about the axis P and elastically restrained against
torsion, so that it oscillates with a natural torsional

frequency no (fig. 15).
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The phase anglos of wing bending and wing torsion
damping may be considered as being about equal. Table VI
gives the values of phase angle g obtained from oscilla-
tion tests with constant excitation and with impulse ex-
citation (deflection tests). They are multiples of the
values measured on smooth test bars, because in built-up
members develop additional losses at the joints. On the
average gr_ = 0.061. The phase angle of the aileron damp-
ing is according to (6) h = 0.20, and according to a res-
onance curve, h = 0.08.

The mean energy content of the oscillating airplane
at the dangerous mode may be determined by forming the in-
tegral

2

over the whole airplane, whereby p

(9)

denotes the absolute
amplitude of the mass element dm measured in the oscil-
lation test. This Calculation is so tedious, however,

that in most cases an estimate is preferable.

Visualizing the outer end of the wing as a rigid

plate oscillating in torsion at amplitude B about its
nodal line while the aileron oscillates in torsion about

the hinge llne at amplitude C, the energy content of wing
and aileron is:

Z_ = -_-_[-,_ k

: _ bq ¢_ C_ER = %-.[mR kR_ + P 4 _
1(io)

If tl,e wing oscillates in pure bending, then k = e = co,
Bk= B e-- A.

Very often the oscillation amplitude and the wing

chord are very variable near the tip. As the energy trans-

fer involves the square of the amplitude, it is advisable
in this case to form the mean values:

2 :_ t3

(A t)m = : t dy

dy

t m

f_2 tS dy

(ll)

• f: t_ dy
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The three following limiting cases must be considered:

I. n o = 0, free pivoting about the axis P.

= _ phase angle _ = _.
B

n O = _I,

_-=._g,
B

forced frequency = natural torsion

frequency.

17
phase angle q0= _-.

n o ,very high, great torsional stiffness.

no 2 J 2
N _ n___ I + g , phase angle q0 N g.B

Si_ilar relations hold for a plate ,,vith attached aile-

ron, which is pivoted with elastic restraint about the

hinge axis. With AR L (fig. 16) as the forced amplitude

of the aileron hinge, the amplitude ratio "of the forced
oscillation is-

AR ( ot ih h
_-= .\n_ e -. l/

mB kR2 + P %4 bq. 417

.... .............7J...... ....
r_ _ L + ? L b v-- _ + _- -:l

-. -'H. R -- q _R' _ AR _ /

(15)

The values for the ar_plitude ratio in the three limit-

ing cases correspond to those given above. The cases be-
tween the first and second limiting cases are of particular

significance for the forced oscillat%on, because here the

phase angle lies in the second quadrant; that is, it ap-

proaches the optimum phase angle which almost always lies

in the third quadrant. This is borne out by experience•
Flutter usually occurs either antisymmetrically- that is,

with freely oscillating ailerons, so to say- or symmet-

rically, at a frequency which lies above the natural o scil-

latien frequency of the ailerons.

The values of the amplitude ratio obtained from the
oscillation test are, on the whole, smaller than according

to liLAting case l, because tile elasticity of the control
system shifts the oscillation mode toward limiting case 2.
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TABLE VI. Wing: dud Ailerbn Damplng

No. Type

I DP 9

2 He 8

3 L 78

4 He 60

5 He 46

6 KL i A

7 Do I0

8 L 102

9 AC 12 E

I0 Do 12

II M 28

12 S 24

13 Ar 66 C

g

0.05O

.O3O

.034

.0 51

.047

,0 67

.04!

.042

.147

.086

.078

.osB

GF̧
_I - Ft m

kg/m a

4.8

2.4

6.9

3,6

7.2

5.8

5.0

5.4

5.1

5.4

4.0

dF IN t_
T=

(2_+l)g tm

o •53

.17

.50

.42

.72

.84

•63

•46

1.67

.96

.92

.52

Assume that axis P

t ions at anp litu&e A
ratio of this forced oscillation is:

" )• -. _- \n _ e -. I

n k _, + _-. p b

1

-. m .sl,+ 2_-_ p I b

0.2i

•14

.15

.19

.19

.19

.-_9

.19

.21

.31

.33

.20

dR

w

0.0029

•0039

.0039

0017

.0046

.0134

•00 62

executes forced vertical oscilIa-

and frequency n. The amplitude

(14)

• , . t

• T'he comparative _fa_ctor i_ depends. 0nly on the mass

"distribution and on the air density. The second terms

represent the effect of the co-oscillatlng air masses•
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It should.be• noted that finite• values of _R are

still obtainable eve:_ if the aileron c.g. lies in the
• . .

nhinge line, because the co-oscil_.ting air masses exert a
i " . ' • •

•mass.coupling moment. This explains the fact that an ai-
leron, whose static e,g. lies only very little behind the

hinge line can still excite the oscillations to flutter

(cf. section III,l,g,h,c).

For the customary method of estimating the critical

velocities, as well as for the new method using oscilla-

tion tests and recommended hereinafter, it is important to

know whether flntter occurs in approximately the same mode

as the oscillation of equal frequency on the stand.

A very simple way is to visualize the wing tip as a

mass-elastic system. Posing the torsion of the wing tip

about the .nod.al line at

whereby amplitude B is real, the inertia force moment is

G 0 B v_ Jut

the elastic moment

ig _ iut+ig
foe P = fo B e

and the excltational me merit _

i_t
= I,_e

In steady oscillation, the sum of these three moments

must always disappear; that is,

- m B _ + fo B eig + N = 0

Separating thi's equation into real and imaginary parts,
affords ..

- 0 _ _2_+ fo B cos g + _iI = 0

i fo B sin g + i M" = 0

_[ow, the aerodynamic exciattion could occur in such

a manner that the "blind component" H t = 0. Then the
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oscillation frequency with aerodynamic excitGtion would not

differ at all from the natural frequency and from the fre-

quency IiI = 0 of the oscillation test. In actual flutter,

it usually is H T < 0 The _^• p_ase angle most favorable for

the excitation lies generally in the third quadrant, as

will be shown b_!ew. The oscillation frequency is, as a

result, lower• On the other hand, the frequency increases
witl_ the flying height because the &Jr mass co-oscillating

with the wing, decreases with deer@asing density.

The estimate will be fairly correct when assuming the

phase angle of the exciting moment at _, _ 225 °" that is

posing

.. _[r = Mrr=_ fo A sin g

The average for 12 wings is sin g _ 0.06. The change

of frequency in this case is -3 percent; that is, still

within the _ resonance width An. Model experiments and

flight measurements in several instahces proved that these

assumptions agree with the facts in approximate magnitude,

particularly for coupled wing and aileron oscillations.

Greater blind component s and consequently greater dis-

crepancies in frequency are to be expected when the damp-

ing is great and the phase angle of excitation is close to

180 ° or 860 ° . This is the case, e.g., on model wings with-

out ailerons which are not dynamically similar; have high

frictional damping and oscillate with a low reduced fre-

quency. The limiting case is the "oscillation" with 0

frequency- the aperiodic twisting off of the wing due to

static torsional instability. In tills case,

H T =- fo B cos g.

However, the uing flutter observed up to date, has

been so far from this limiting case that the assumption of

identical modes for actual fl_tter and for oscillation

test may be considered as a close approach, provided; of

course, the oscillation test is made with different meth-

ods of excitation since, for example, syn_z_etrical modes

appear only indistinctly or not at all, with antisymmetri-

cal excitation. Furthermore, it should not be expected

that oscillation modes due to aerodynamiccoupling, are

reproducible on the oscillation bench.
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5. Criterion for Flutter

Wing flutter with constant amplitude Occurs when the
energy of damping equals the input of aerodynamic energy;
that is, _vhen

Lm + Ldm = 0 (16)

If, for simplification, we set Av = A, A" = O, we obtain
from equations (6) , (12) , (16) the condition under which
oscillations with constant amplitude occur_

_(_ + _ _F') + _(_ + _ o.4 dF')+ _(_ + _ dR)

+ A _' t_ + A _" _5 + A C' _ + A C" _7

+ (s, c' + _" c") t_ + (_, c" - 3" c,) _9 = o (17)

As the oscillation test is primarily a means for re-

cording the oscillation am plitu_des, it is advisable to

consider the amplitudes B and C as independent variables

and t o set

B' = _ cos _ C' = C cos

_" : _ sin q0 c" : c sin _/

The phase angles _ and _ should be so determined

that the energy assumes an extreme value. Partial differ-

entiation of (lO) according to _ and _ gives:

_.(-t_ sin qoo + t s cos q0o)+

[_8 sin(_o-9o)- t_ cos(#o-q_o)J = 0

_(- t6 sin _o+t7 cos 40) -

(18)

[t_ sin(_/o-%)- _9 c°s(#o-_o)] ; o

From (17) and (18) the limiting values of the ampli-

tudes B and C may be computed as functions of the reduced

frequency. Admittedly, the calculation is quite complicat-

ed for three degrees of freedom.

Restricted to two degrees of freedom, the results are

more simple and elucidating. This limitation is particu-
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larly permissible when the aileron is the main cause of

flutter and the rest of the wing simply oscillates with it.
Then the ensuing mode of wing oscillation may be said to

have only one degree of freedom. The wing then oscillates
about some fixed nodal line as in the oscillation test.

This has also been observed in model tests. The four fol-

lowing modes of oscillation with two degrees of freedom,

are investigated.

I. C = 0, wing bending + wing torsion.

w

2. B = 0,

3. A= 0,

wing bending + aileron motion.

wing torsion about quarter-chord point
+ aileron motion.

4. A =- B I, B" = 0, wing torsion about three-

quarter chord point + aile-
ron motion.

Writing the extreme conditions (18)

in:

1. A (_ +_dF')+B2(_2+*0.4 dF')-Z_ # +_#- 0

sin q0o = - , cos q0o = -

in (17) results

j _+%s 2

% %7
---- 6 ...... --, COS _/0 --- - !

sin _o _/ 162+V, 7 _ J%s2+17
2

3. _2(_+coo.4 _F')+c2(7,3+co dR)-BCJ_+%9 _ = o

%8 , COS _ = ,- %9

sin = - j
--2 -- 2

4. B (_i+12-I_+C01.4 riFt) + C (Is+cod R)

- _'6) + (t9 2- 7,v =0

%e - "('G

-- " )2 " "2,/(%8 %_ + (_,_- %,)

t9 - t7

sin _o = -

7 (19)

COS kO ---- --
2 -- 2
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Excepting _6 the energy coefficients are consist- _

ently positive; theref0re_ the optimum phase angles usu-
ally lie in the third quadrant. For mode 2, the 0pt!mum

phase angle passes from %he second into the third quad-

rant at o0 _ 0.5; for the fourth mode, it passes from the
fourth into the third quadrant at o0 = 1.5.

6, Energy Graphs

In order to circumscribe the influence of damping on

flutter, the calculation is based on the following extreme
value s :

f

dF = 0 0.25 1.25

dR = 0 .0025 .025

The values d = 0 are only of theoretical interest.

The corresponding curves show the range within which

energy may be taken from the air stream.

The four oscillationmodes finally afford energy

graphs, With four curves each, for the different damping
values. The abscissa'Is the logarithm of the amplitude

ratio; the ordinate is the reciprocal value of the reduced

frequency ,.

1 - V

In the following, the energy graphs (figs. 17-23) are

compared with experience.

a_) Oscillation: win g_b_en_di_n_G and win.g_torsion.- Fig-
ure 17 shows that the best condition for flutter exists at

the amplitude ratio A/B = 0.9. This corresponds approxi-

mately to a pure elastic oscillation about the three-quar-

ter chord point. The reduced frequency (oh -- 0.85 is not

exceeded even with Very low damping dFV = 0.25, and may

therefore be considered as the practical limit. With

greater damping, as it occurs particularly on models, the

upper limit drops to _ = 0.52, so that in especially un-

favorable cases, flutter in bending and torsion is likely
to occur. In the region 00 = 0.52 to 0.85, this type of

flutter has been analytically investigated on the Junkers

A 20 (reference 17). The tapered wing has a chord of 2.36

m at the root and a mean chord of 1.70 m at the severely

oscillating tip. Referred to the wing chord of 1.70 m,
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the calculation gave in second approach, the reduced fre-

quency _ = 0.45. The torsional stiffness of the thick

cantilever Junkers wingisso great that the critical

speed would still lie above the operating range even if

the reduced frequency were twice as high.

b_ Oscillation mode: WIH_ bend in_g and aileron motion.-

This mode is especially predominant in the He 46, KL 1A,

AC 12E, Do 12, M 28.

Figures 18 and 19 are calculated for aileron chords

of T = 0.15 and 0.25, and show first that the flutter

zone becomes smaller as the aileron chord becomes greater.

According to (15) the backward e.g. position of the aile-

ron affects the amplitude ratio. The reduced frequency

is so much higher as the amplitude ratio is smaller and

the aileron e.g. moves backward, although increases only

to to _ 2 with very small damping and 00 N 1 with very

great damping. Practically only the right-hand parts of

the curves come in question, because the amplitude ratio

of the flutter oscillation cannot drop below a certain

value determined by the mass distribution of an unbalanced

aileron. The value A/C = 0.2 to 0.3 may be regarded as

the practical limit.

If the amplitude ratio is low the aileron damping ex-

erts a profound influence on the reduced frequency. At

A/C = 0.25, e.g., _ increases from 1.13 to 1.4 when the

aileron damping drops from an initiallF high value of

0.025 to the low value of 0.0025. Flutter therefore con-

tinues until the speed has dropped to 80 percent of its

initial value.

A comparison of the ,} values as computed for several

airplanes with the energy graphs, discloses _0 values
which are of the same order of magnitude as the observed

ones. As the interpolation for different aileron chords

and dampings by means of figures 18 and 19 is not very ex-

act, a closer agreement can be obtained when establishing

a special energy graph for each airplane, using the damp-

ing values and amplitude ratios obtained in the oscilla-

tion test and taking the _ values from these graphs. The

essential factor is the correct reproduction of the damp-

ing effect and the backward e.g. position of the aileron

on the flutter phenomenon.
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cL 0_sci_l__l_a_ti_onrag_de_-W_!ng:torsion about a quarter-
chord _gint_and ail_gron_mg.ti0_n.- This mode occurs approx-
imately in models DP 9, He 8, He 60, L i02, S 24. The

fact that 80 percent of these types of airplanes were coin-

_iotel_ _ destroyed, proves that this mode is by far the

rues{ _angerous. The energy graphs (figs. 20 and 21) show

that extremely high values of the reduced frequency are

obtainable with small damping. If the aileron damping

drops from an initially high value to a small final value

after flutter starts, a large excess of energy is availa-

ble, which inevitably must lead to complete failure.

One interesting feature is that such flutter is possi-

ble only within a limited range of the amplitude ratio.

The practical upper limit is for t1_e aileron chords:

T = 0.!5 B/C _< 0.37

T = .25 B/C _< .45

This would stipulate a certain minimum distance of back-

ward c.g. position of the aileron.

An aileron with the rather conventional characteris-

tics: T = 0.15; k R = 0.12 _; sR = 0.06 _; m R = 0.25

p bq has, for example, according to (15), the ampli-
tude rat i0

B_ 1 AI_ - 0.192
C 1.2 C

if freely oscillating. According to figure 20, this value

lies exactly at the point of minimunl critical velocity for

small wing damping, and gives 0o = 1.25. In the neighbor-

hood of amplitude ratio B/_ = 0.2, reduced frequency

values up to 0o = 0.9 are possible even with maximum

damping. With small damping, very high 0o values are pos-

sible, as actually observed on the L 102 at the end of

flutter.

d_ Oscillation r_ode: Wind torsion about three-_%_arter

chord _p_o_int_+_a_i__le_ro__mo_t_i_on.- In this _ode no reduced

frequency values in excess of _o _ 1.0 are possible, even

with small damping (figs. 22 and 2_). This mode is there-

fore less dangerous.

The aileron chosen above as example, requires twice

the unbalance (s R = 0.12 I) to give an amplitude ratio
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C 0.2 C

which, i,u figure 22, meets the right-hand side of the curve

for small damping co = 0.62. With the aileron c.g,
farther forward, this Value could be: obtalned only when the

amplitude C is increased at the saL1e time by resonance
of the control system.

_ 7. Application to a Practical Example

These energy graphs are supposed to give a general

view of She new method of estlmatlng the critical speed.

in actual Cases, it usually'inv01ves oscillations at which

the" nodal lines d0 not exactly correspond with the third

nor with the fourth type of the illustrated examples. The
aileron chords also vary within a great range. However,
with the aid of the figures given in tables III and IV,

supplemented by the damping energy from the oscillation

test, a particular energy graph can be obtained for each

individual case.

For example, if the oscillation test shows that the

nodal li_e in the outer part of the wing lies at three-

quarter chord point, that the (angular) amplitude C of

the aileron motion equals twice the wing torsion amplitude

B, and that the wing damping factor is dF_ = 0.25, then

figure 28 gives for B/C = 0.5

1 = i.06 to I.I0
co

co = 0.94 to 0.91

depending on the v.alue of the aileron damping dR • In this

case the effect of dR on the _ reduced frequency is quite

small. In fact, the reduced frequency will be lower than

the values found from the graph, because the assumption of

optimum phase angle is not exactly fulfilled. Even so, it
is possible to estimate the lowest critical speed'at the

observed mode of oscillation, which may prove very valua-

ble under/certain clrcumstances.

P reventatlve measures against flutter, particularly

mass balancing of the ailerons, show their effect in the

low aileron amplitude C in the oscillation test. The am-

plitude ratio B/C can then increase quite easily beyond

l, so that no flutter at all is possible for a nodal line

D
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at the quarter-chord point (figs. 20 and 21) or at any

rate that a substantially higher value of 1/_ will be

found on the right-hand branch of the curves in figures
18, 19, 22, and 23.

V. PREVENTION OF FLUTTER

The previously described conditions for oscillation

modes of amplitude ratio and damping- while admittedly

necessary- do not, however, constitute adequate conditions

for flutter. The thus-estimated critical speeds are there-

fore on the safe side. in the energy calculation, the prem-
• ises were optimum phase angles which, as is known are

closely approached in many cases in practice, especially

with aileron oscillations. On the other hand, it is con-

ceivable that cases may occur wherein the phase angle can-

not evenapproachthe optimum value and in which no flut-
ter is at all possible, even if the oscillation modes as

recorded on the oscillation bench, were indicative of flut-
ter.

The very simple form of the energy method compared

with the exact method, is simply the result of omitting
the elastic forces as well as the mass forces and their

distribution from the calculation. But these forces are

far from negligible as far as the magnitude of phase angle

is concerned. To illustrate: It can be proved that with
two degrees of freedom - wing bending and wing torsion -

flutter is possible only when the product

m s>_-_ ts
16 (20)

whereby m is the wing mass per unit length of the span

and s the distance of the c.g. of the wing element behind

the quarter-chord point. Applied to a cantilever wing

without aileron, this simply means shifting the c.g. of the

individual wing sections near the quarter-chord points, in

order to prevent flutter at any air density p. Such wings,
although with ailerons, are found on _the M 20.

The majority of flutter cases described in se9tion ili,

probably could have beenprevented by careful mass balanc-

ing of the ailerons. This method, originally pointed out
by yon Baumhauer and Koning (reference 3) in 1923, has fre-

quently been discussed since then in the literature. It is

a fact, however, that practically all older models had un-
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balanced ailerons and that flutter was less frequent and le
less dangerous at the then comparatively low flying speeds.

On the other hand, mass-balanclng the ailerons after
an airplane is built, mea_s an expense of weight, requir-
ing up to 0.5 Dercent of the airplane weight aside from
increased drag. Quite obviously, subsequent modification
of all existing types was therefore out of the question,
particularly as the need for such measures did not seem
very apparent as far as rthe older types were concerned,

For the new types the DLA at first recommended mass
balancing; later thiswas incorporated into the airplane-
design specifications, An aileron originally designed for
mass balance is not much heavier than one designed without
balance. The purpose of mass balancing is to reduce the
aileron amplitude to harmless magnitude in all modes that
may cause flutt0r. For modes such as shown in figures 2_
and 23, even a "partial mass balance" may be all that is
required.

In other cases, however, it is necessary to effect a
complete and careful balance because it requires a ten-
times-greater aileron amplitude in order to get out of the
range of the minimum of critical speed, according to the
diagrams. This fact has not always been sufficiently rec-
ognized.

The success of these preventative measures should be
checked on the oscillation bench, because even a complete-
ly balanced aileron may oscillate. Possible causes are:

1. Mass coupling due to the co-oscillating air mass,
particularly when the gap between wing and aile-
ron is small and the aileron is not aerodynamic-
ally balanced.

2. Kinematic coupling with complicated• and indistinct
static structure of the cellule.

3. Lack of torsional stiffness of ailerons.

4. Natural oscillations of the system: left aileron,
controls, right aileron,

The latter oscillation is particularly dangerous
when coincident with a symmetrical natural mode of the
wings. In the vicinity of the resonance point, the phase
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angle of the aileron motion relative to the wing motion
changes profoundly with the frequency, so that the phase
angle most favorable for flutter can easily occur. Reme-
dies are: changes in the natural frequency of the aileron
control or artificial damping of the aileron deflection.

Some of the above cases prove, at any rate, that even
ailerons nearly or conpletely mass-balanced may occasion-
ally develop flutter, in which case, however, the reduced
frequency seems to be below the average, i.e. _o< 0.9.

If the aileron uere to be considered as nonexisting

so far as flutter is concerned, they mould have to have

not only zero amplitude on the oscillation bench but also

complete aerodynamic balance - at least, within the range
of small angles of attack and aileron deflection. It can

be proved theoretically that otherwise the circulation may

cause a purely aerodynamic coupling, which lowers the crit-

ical speed relative to that of the wing flutter in bending
and torsion.

If all these conditions for preventing aileron oscilla-

tion were fulfilled, the displacement of the c.g. axis of

the wing near to the quarter-chord point, would practically

suffice for flutter prevention. Obviously, this is predica%-

ed on the assunption that the two-dimensional theory of wing
flutter is substantially correct, which cannot be summarily

taken for granted with complicated wing shapes. The wing

stiffness of such an airplane could be arbitrarily low,

provided no other lower stiffness limits existed.

Such flutter prevention, however, requires a large
number of design changes of _suc_ a radical nature that in

many cases it _ould be tantamount to a new departure in

design methods. In view of this fact, it seemed more ex-

pedient to increase the wing stiffness as long as consist-
ent _vith minimum weight. This was the reason why this pre-
ventative l_easure was resorted to at first. Greater stiff-

ness leads to higher wing frequencies and consequently

higher critical speed. As a result, the flutter, while not

altogether prevented is, hov:ever, _oved up into a speed
_ich can be reached. A con-range above the highest speed _"

tributing factor was the consideration that the wing it-
self must have a certain minimuu stiffness in order to pre-

vent static torsional instability and reversal of aileron

effect at high flying speed.



48 N.A.C.A. Technical Nemorandum No. 782

With further increase of speed, however, a point is

reached where the simple expedient of increased stiffness

is no longer compatible with the weight and where it will

be necessary to combine all known measures for the pre-
vention _f flutter.

Translation by the ITational Advisory
Committee for Aeronautics,
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Yi&n_re I.- Fin and
rudder

with servo-rudder

Figs. 1,2,S,4,5,6

Figure 2.- Win_ section

Strut

Figure 3.- Critical fo_n of
oscillation of the

He 8 at 850/mln. scale of

wing contour I:C_O

1 Upper wi__

_',,. I

Figure 4.- Dangerous oscillation

of L 78 at 860/rain.
scale l:BO

Figure 5.- Dangerous oscillation Figure 6.- Dengero_ oscillation
of He 60 ?80/m_n. of He 46c at 815/rain.
scale 1:80 scale I:_0
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¥i&,lre 7,- Dang

of KL 1 A at 675/rain. /

scale 3zZ490 Figure 8,- Dangero_ oscillation

of Do 10; scale 1:100
_._-_ Lines of break on left and

right wing
__t__ Break or stretch of cables

of AC 12 E; scale 3:200 Figure 9.- Den_erous oscillation

of L 102 at 835/rain.
scale 1:80

/

/

FiL,'ure II.- l_,._ero'o.s 08cillation
ofDo 12 at 580/min

as_metrical excitation
scale 3:100

12.- Dangerous oscillation

of M 28 at 770/mJn.
asy_netrical excitation
scale 1:100
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I

!
Lower wing

Figure 13.- Dangerou_ oscillation
of S 24 at 1215/rain.
scale I :ISO

Y:14_e. 13,14,15,16,17,18

A

O/s'A

,_-.--,. TbO-.---m

Figure 14.- Width
of res-

onanoe

G"ul've

P R__,C

Yigure 16.- Aileron
vibration

Figure 15.- Plate
vibration

I
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A/O

Yigure 17.- Wing bending

end wing
torsion

o
"Of "02 "OF .f "2 "5 1

A/c

Figure 18.- Wing bending
and aileron

motion,_ • 0.15
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Figure 19.- Wing torsion
and. aileron
motion,

B O.2B

Figure 21.- Wing torsion
about 1/4

chord point and aileron

motion, v • 0.25

Figure 22.- Wing torsion

about 3/4

chord point and aileron
motion, • a 0.15
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Figs. 19.20,21.22,_
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Figure 20.- Wing torsion
about 1/4

chord point and aileron
motion, m s 0.15

Figure 2J.- Wing torsion
about 3/4

chord point and aileron

motion. T " 0.25
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